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An algorithm is described for rapid solution of classical boundary value problems (Dirichlet 
an Neumann) for the Laplace equation based on iteratively solving integral equations of 
potential theory. CPU time requirements for previously published algorithms of this type are 
proportional to n2, where n is the number of nodes in the discretization of the boundary of the 
region. The CPU time requirements for the algorithm of the present paper are proportional to 
n, making it considerably more practical for large scale problems. 0 1985 Academic Press, Inc. 

I. INTRODUCTION 

When a boundary value problem for the Laplace equation has to be solved 
numerically, one of two approaches is usually employed. The first approach calls 
for discretizing the region of interest by means of some finite differences or finite 
element type scheme with subsequent application of a “fast solver” to the resulting 
system of linear algebraic equations (see, for example, [S, 7, 1 la, 13a]). The most 
efficient of fast solvers require an amount of storage and CPU time proportional to 
N, where N is the number of nodes in the discretization of the region. These 
methods are most suitable for rectangular regions; they are less efficient for regions 
of more complicated shapes. Algorithms discretizing the whole area of interest are 
not applicable to exterior boundary value problems, like the ones encountered in 
aerodynamical calculations (see, for example, [9]). For such problems, and also for 
interior problems in extremely complicated regions, algorithms based on boundary 
integrals are usually employed (see [2, 8, 151). In most of these algorithms, the 
problem is reduced to a second kind integral equation on the boundary of the 
region by means of classical potential theory. Discretization of the resulting integral 
equations leads to large scale systems of linear algebraic equations whch are in turn 
solved by means of some iterative technique (see [ 1, 9, 131). Most iterative schemes 
for solution of linear systems resulting from classical potential theory require 
application of the matrix of the system to a sequence of recursively generated vec- 
tors. Applying a dense matrix to a vector requires k2 multiplications and about as 
many additions where k is the dimension of the system, and the dimension of the 
system is equal to the number of nodes n in the discretization of the boundary of 
the region. As a result, the whole process is at least of the order n2; in a square- 
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shaped region n2 = l&V, and this estimate turns out to coincide with that for a con- 
ventional fast Poisson solver. In practical computations, however, fast Poisson 
solvers tend to be substantially more efficient whenever they are applicable. 

The present paper describes an algorithm for rapid application of matrices 
resulting from discretizations of integral equations of classical potential theory. The 
algorithm requires an amount of work and storage proportional to n, and when it is 
combined with a generalized conjugate residual type algorithm (see [6]), the 
resulting process takes very few iterations to converge, resulting in an order n 
algorithm for the numerical solution of the original integral equation. 

When the algorithm of the present paper is applied to a boundary value problem 
for the Laplace equation, the result of the calculation is a charge or dipole dis- 
tribution on the boundary of the region. Evaluating the solution at a point inside 
the region involves additional order n operations resulting in the total CPU time 
estimate 

An + Bmn (1.1) 

where m is the number of points at which the solution is to be evaluated, and A, B 
are coefficients determined by the physical situation, computer system, language, 
etc. When m is small, the estimate (1.1) is dominated by the first term, resulting in 
an extremely fast algorithm. For interior boundary value problems, m is often 
proportional to n , ’ in which case ( 1.1) becomes substantially inferior to CPU time 
estimates for fast Poisson solvers whenever the shape of the region permits the latter 
to be applied efficiently (see [ 5, 13a]). 

II. RELEVANT MATHEMATICAL FACTS 

1. Boundary Value Problems for the Laplace Equation 

We will be considering the situation depicted in Fig. 1. The open interior of the 
Jordan curve y: [0, L] + R* will be denoted by 52. The image of y will be denoted 
by r, and the closure of 52 will be denoted by a, so that & = ZY The curve y is 

FIG. 1. A boundary value problem in R*. 
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presumed to be at least c2 (i.e., it has at least two continuous derivatives), and is 
parametrized by its length. The normalized internal normal to y at t E [O, L] will be 
denoted by N(t). For an integrable function J [0, L] + R’, we will be solving one 
of the following four problems: 

(A) Interior Dirichlet problem: find a 4: Q + R’ such that 

Vqqx) = 0 for XEQ, 

4(x) =f(lJ -‘(-a for x~d!Z. (2.1) 

(B) Exterior Dirichlet problem: find a bounded 4: R*\Q + R’ such that 

Vqqx) = 0 for x E R*\Q, 

Q(x)=f(lJ-‘(x)) for ~~80. (2.2) 

(C) Interior Neumann problem: find a 4: B + R’ such that 

V’qqx) = 0 for ~~52, 

-g=f(r-‘(I)) 
(2.3) 

for XEXL 

(D) Exterior Neumann problem: find a bounded 4: R2\Q -+ R’ such that 

V’qqx) = 0 for x E R*\fi, 

g=i(r-‘(X)) 
(2.4) 

for xE22. 

In the above problems, 4 has to be twice differentiable in the interior of its 
domain, and contnuous on its closure. As is well known, problems (A), (B) have 
solutions for any integrable f, while the problems (C), (D) have solutions if and 
only if 

s OLf(t)dt=O. (2.5) 

The solution of the problem (A) is unique, and the solution of the problem (B) is 
unique in the class of bounded functions. For the problem (C), the difference 
between any two solutions is a constant, and the same is true for the problem (D). 

2. Single and Double Layer Potentials 

The potential of a charge of unit intensity located at the point x, E R* is the 
function #X,: (R2\ {x0}) + R’ defined by the formula 

dx,(x) = h3( lb - xoll 1. (2.6) 
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The potential of a unit strength dipole located at x0 and oriented in the direction 
h E R2 (l/h/l = 1) is defined by the formula 

a (W-x,)) ~rg,h(X)=f(~xg(X+fh))I~=O= ,(x-xo,(2 . (2.7) 

For an integrable function 0: [0, L] + R’, the potential of a single layer with den- 
sity (T is 

P:(X) = jL &r)(x) a(t) 4 
0 

and the potential of a double layer with the dipole density (T is 

P:(X) = IoL ~yw,&) a(t) dt. (2.9) 

3. Integral Equations of Classical Potential Theory 

In classical potential theory, the problems (2.1), (2.2) are solved by representing 
#J as a double layer potential, and the problems (2.3), (2.4) are solved by 
representing C$ as a single layer potential. Single and double layer potentials are 
singular on r, and the analysis of these singularities yields the following second 
kind integral equations: 

(Al ) Interior Dirichlet problem: 

MX)+P:(Y(X))=f(X). 

(A2) Exterior Dirichlet problem: 

-71~(X)+P~(Y(X))=f(X). 

(A3) Interior Neumann problem: 

716(X) + &P%w) =fb). 

(A4) Exterior Neumann problem: 

-m(x) + &Pu,(Y(x)) =f(x)- 

(2.10) 

(2.11) 

Equations (2.10) and (2.12) have unique solutions for any integrable J 
Equations (2.11), (2.13) have solutions if and only if certain conditions are met (see 
[12]), and these solutions are not unique. However, the null-spaces of the 
operators on the left-hand sides of these equations have dimension 1; adding one 
extra constraint eliminates the non-uniqueness (see, for example, [lo]). 
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The rest of this paper is devoted to solving Eqs. (2.1Ok(2.13) numerically. 

Remark 2.1. It is easy to show that if the mapping y has k (k > 2) continuous 
derivatives, then the kernels in the Eqs. (2.10)-(2.13) have k-2 continuous 
derivatives (see [4]). This observation will be important in the following section. 

4. Harmonic Expansions 

If a function 4: R2 + R’ is harmonic in the closed disk D with the origin at x E R2 
and radius R then there exists a pair of sequences {Q,}, {p,}, k = 0, 1, 2,..., such 
that for any x E D, 

d(x) = 2 pk(ak cos(k0) + Pk sin(k0)). 
k=O 

(2.14) 

In the above formula, p = //x-x0/l and 8 is the angle between the vector x - x0 and 
the x axis. If 4 is harmonic outside D and bounded at infinity then there exists a 
pair of sequences {a,}, { pk} such that for any X E R2\D, 

d(x) = ,z, f tak cww + bk WW). (2.15) 

A detailed derivation of expansions (2.14), (2.15) can be found, for example, in 
c121. 

As is well known, real and imaginary parts of an analytic function w  = u + iu of 
the complex variable z = x + iy are harmonic functions of variables x, y. Conversely, 
for any harmonic function U: R2 --) R’, there exists an analytic function w: C’ + C’ 
such that u(x,y)= Re(w(x, y)) (see, for example, [3]). This fact is often used to 
facilitate computations with harmonic functions, and for the rest of this paper we 
will make no distinction between points in R2 and points in C’. In complex terms, 
the expressions (2.6), (2.7) assume the form 

&o(x) = Wlog(x - x0)), (2.16) 

4X0./?(X)= Re h ( > ’ x-x0 (2.17) 

and the expressions (2.14), (2.15) assume the form 

k=O 

(2.18) 

hx) = Re k;. tx -“h,k7 (2.19) 

with the sequences of complex numbers { ak}, k = 0, l,..., replacing the sequences of 
real pairs { ak, Bk}. 
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III. RELEVANT NUMERICAL ALGORITHMS 

1. Trapezoidal Quadrature Rules for Periodic Functions 

We will define an n-point quadrature rule q on the interval [0, L] as a finite 
sequence of pairs {xi, wi}, i = 1, 2 ,..., n, where X~E [0, L] for all iE [ 1, n]. For a 
function 4: [0, L] -+ R’, we will look upon the sum 

V(4)= f wi4(xi) (3.1) 
i=l 

as an approximation to the integral 

I oL d(x) dx. (3.2) 

We will say that the family of quadrature formulae ye, = {xni, wni}, i = 1, 2,..., n, has 
a rate of convergence m (m 2 1) for the function 4: [0, L] + R’ if there exist such 
A>O, N>O that 

(3.3) 

for all n > N. The n-point trapezoidal quadrature rule is defined by the formulae: 

xi=(i-1): for i=l,2 ,..., n, 
n 

L 
wl=wn=% 

(3.4) 

and wi = L/N for iE [2, n - 11. As is well known, if 4 has two continuous 
derivatives then the trapezoidal quadrature rule converges quadratically for 4, i.e., 
there exist such N, A < 0 that 

for any n > N. 
The following theorem is less widely known. Its standard proof based on the 

Euler-Maclaurin formula can be found, for example, in [ 161. 

THEOREM 3.1. Suppose that 4: [0, L] + R’ has k continuous derivatives (k > 1). 
Suppose further that 4 and its k derivatives are periodic with the period L. Then the 
order of convergence of the trapezoidal rule for 4 is equal to k + 1. 
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2. Nystriim Algorithm 

In order to solve the integral equation 

4(x) + J-oL K(t, x) d(t) dt =f(x), (3.6) 

the Nystriim algorithm associated with an n-point quadrature formula q = {xi, w,}, 
i = 1, 2,..., n, replaces (3.6) with a system of linear equations 

4i + f wjK(xj, xi) djif(xi) (3.7) 
j=l 

with i = 1, 2,..., n. We will denote the matrix of the system (3.7) by A,. The solution 
dl, 42,..., 4, of this system will be looked upon as an approximation to the solution 
of (3.6) at the nodes xi, i= 1, 2 ,..., n. If (3.6) has a unique solution then for a wide 
class of quadrature formulae qn the system (3.7) also has a unique solution, as long 
as n is sufficiently large. Furthermore, under fairly broad assumptions, the con- 
vergence rate of the Nystriim algorithm is the same as the convergence rate of the 
quadrature formula it is based on (see [ 11). 

The following theorem is the principal justification for using the generalized con- 
jugate residual algorithm (see next subsection) for the solution of the system (3.7). 
It can be found in [ 11. 

THEOREM 3.2. Suppose that K: [0, L] x [0, L] -+ R’ is a c2-function and the 
Eq. (3.6) has a unique solution, Suppose further that the system of linear equations 
(3.7) has been obtained by applying the Nystriim algorithm based on the trapezoidal 
quadrature rule to (3.6). Then 

lim k( A,,) = a, 
n-00 (3.8) 

where 0 < a < 00 is some real number and k(A,) denotes the condition number of the 
matrix A,,. 

3. Iterative Solution of Linear Systems 

Discretization of Eqs. (2.10t(2.13) by means of Nystriim algorithm leads to large 
scale systems of linear algebraic equations. These systems are nonsparse and non- 
symmetric, but have asymptotically limited condition numbers due to Theorem 3.2. 
For such systems, the generalized conjugate residual algorithm (GCRA) is known 
to converge rapidly (see [6] and [ 171). In the present paper, we will need two facts 
concerning GCRA. 

Suppose that GCRA is applied to the linear system 

Ax=y. (3.9) 
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Then 

(A) The number of operations required for the first k steps of the GCRA is 
equal to 

akN + bk2N + ckQ, (3.10) 

where n is the dimension of the system (3.9), Q is the cost of applying the matrix A 
to a vector and a, b, c are coefficients determined by the computer system, par- 
ticular implementation of the algorithm, language, etc. 

B. On each step of the GCRA the residual in the approximation of the 
solution (i.e., )\Ax -yllz) decreases at least by the factor 

1 -k(A) 
1 + k(A)’ 

(3.11) 

Combining (3.8) and (3.11), we obtain the following theorem. 

THEOREM 3.3. Suppose that K: [0, L] x [0, L] --, R’ is a c2-function and the 
Eq. (3.6) has a unique solution. Suppose further that the system of linear equations 
(3.7) has been obtained by applying the Nystriim algorithm based on the trapezoidal 
rule to (3.6). Then for every E > 0 there exist N > 0 and M> 0 such that for any 
n > N, the GCRA will solve (3.7) to a relative accuracy E in no more than M 
iterations. 

Remark 3.1. The estimate (3.11) is a very pessimistic one and usually, GCRA 
converges much faster, especially for linear systems resulting from discretizations of 
second kind integral equations. In [16a], a considerably stronger estimate for the 
conjugate gradient algorithm is proven. Probably, a similar result can be obtained 
for GCRA. 

IV. AN ALGORITHM OF ORDER n2 

In this section, we will describe a standard algorithm for the solution of boun- 
dary value problems for the Laplace equation in two dimensions. In the following 
three sections, this algorithm will be drastically speeded up. We will be discussing 
the solution of (2.10). The algorithms dealing with (2.11), (2.12) and (2.13) are 
quite similar. 

We will apply to (2.10)’ the Nystriim algorithm based on the trapezoidal 
quadrature rule. Discretizing (2.10) at n equispaced nodes xi, i= 1, 2,..., n, we 
obtain the system of linear equations 

mi+ i aijoj=fi 
j=l 

(4.1) 
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with i= 1, 2,..., n and 

h=f(tA k-4 
n’ 

(4.2) 
% = k%(r,),N(r,)k). 

The linear system (4.1) is solved by means of a generalized conjugate residual 
algorithm, and after the solution {a,} (i= 1, 2,..., n) is obtained, the field at any 
point xoL2 is approximated by the sum 

d(x)- h i v?&r,w(t,w. (4.3) 
,==I 

The system (4.1) is known to be well conditioned (see [l, lo]), and experience 
shows that the conjugate residual process converges for such systems extremely 
well: 6-digit precision is rarely achieved in more than 15 iterations. However, the 
matrix {aY}, i,j= 1,2 ,..., n, is dense, and one iteration of the conjugate residual 
process requires more than n* multiplications and about as many additions. 

The following three sections are devoted to developing a fast algorithm for apply- 
ing the matrix of the linear system (4.1) to a vector or, equivalently, for computing 
the field created on a curve by a dipole distribution on that curve. 

V. EVALUATION OF HARMONIC EXPANSIONS 

The following four lemmas constitute the principal analytical tool of the present 
paper. Their proof consists of expanding the expressions (2.18), (2.19) into Taylor 
series with respect to the variables z, zO. 

LEMMA 5.1. Suppose that the expansion 

converges outside the circle D of radius R with the center at z,,. Then for z outside the 
circle D, of radius R + JzOI and the center at 0, 

(5.2) 

with 

, 
k=l 

(5.3) 
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where (T) are binomial coefficients. Furthermore, there exists an a S- 0 such that 

for anypal. 

1,5(z)-g <a(y)“” (5.4) 

LEMMA 5.2. Suppose that the expansion (5.1) converges inside the circle D2 with 
center at 0 and radius R, < \zOI. Then inside D,, 

b(z)= 2 b,z”’ 
m==O 

(5.5) 

with b, defined by the formula 

bm=$$o$ (“,“r ‘) C-1)“. (5.6) 

Furthermore, there exists a > 0 such that 

d(z)- 5 b,z”’ 
m=O 

for any p > 1. 

LEMMA 5.3. If zo, z E C’ and 1zI > (zoj then 

and 

LEMMA 5.4. For any complex zo, z and { ak}, k = 1, 2 ,..., n, 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

Lemmas 5.1-5.4 can be used for rapid approximate evaluation of the fields of dis- 
tributions of charges and dipoles. In the following two sections, we will describe an 
algorithm for approximate evaluation of integral operators in (2.10)-(2.13) based 
on these lemmas. 
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FIG. 2. Separated sets in R*. 

VI. HEURISTIC DESCRIPTION OF THE ALGORITHM 

We will illustrate the idea of the algorithm of the present paper with a simple 
example. Suppose that dipoles of strengths c,, cz,..., c, (n 2 2) are located at the 
points x1, x2,..., X,E R* (see Fig. 2), and the dipole at the point xi is oriented in the 
direction hi, i = 1, 2 ,..., n. Suppose further that y,, y, ,..., y,_ , , y, (m 3 2) is another 
set of points in R*. We will say that the sets {xi> and { yi} are separated if there 
exist such x0, y, E R* and such real r > 0 that 

Ilxi-xoII <r for all i = 1, 2 ,..., n, (6.1) 

IIYi-Yoll <r for allj= 1, 2 ,..., n, (6.2) 

II% -YoII > 3r. (6.3) 

Finally, suppose that we would like to evaluate the sums 

jYl Cidx,.h,( Yj) (6.4) 

for all j= 1, 2,..., m. Clearly, this is an order nm process (evaluating n fields at m 
points). However, if we are interested in evaluating (6.4) with finite accuracy (which 
is always the case in actual computations), Lemmas 5.1-5.4 can be used to speed up 
the process. 

Let us denote the circle of radius r with the center at x,, by D, and the circle of 
radius r with the center at y, by D,. Due to the triangle inequality, if y E D, then 
for any i= 1, 2 ,..., n, 

IIY-%ll 32 IIxj-xJI (6.5) 

58160/Z-3 
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and, applying Lemma 5.1, we conclude that 

Furthermore, for any k > 1, 

11 t Cidx,,h,(Y)- Re ( j$o ( cy _ i,)j+ 1 JJl cihi(xiBxo)‘)) 11 
I=1 

1 
< 2 Ic,I. 

zk+’ IIY-xoll j=, 

The expression 

(6.7) 

(6.8) 

can be viewed as a polynomial of order k + 1 with respect to l/( y -x0). For a fixed 
k, evaluating its coefficients requires a number of operations proportional to nk. If 
we look upon (6.8) as an approximation to (6.4), then in order to obtain a relative 
precision E, k would have to be of the order 

- log, E. (6.9) 

Now, by first evaluating the coefficients of (6.8) and then applying this expansion at 
the points y, ,..., yrn, we have reduced the amount of computations to the order 

akn + bkm - -log(s)(an + bm) (6.10) 

which for large m and n is significantly smaller than mn. 
An alternative approach would be to evaluate the coefficients of the expansion 

(6.8) (order kn operations), using Lemma 5.2, convert them into an expansion of 
the form 

(order k* operations) and then evaluate the expansion (6.11) at the points y, ,..., y, 
(order km operations). 

When the field of charges (or dipoles) located at the nodes of a curve has to be 
evaluated at these same nodes, the above approach cannot be applied in such 
straightforward manner. In this case, the charges are not separated from the points 
where the field is to be evaluated, and Lemmas 5.1-5.4 have to be used in a more 
subtle way. This is done in the following section, resulting in an order n algorithm 
for the solution of (4.1). 



INTEGRAL EQUATIONS OF POTENTIAL THEORY 199 

FIG. 3. Definition of AL, DL, dk bk Wk Ill, In* m and @ 

VII. DETAILED DESCRIPTION OF AN ORDER N ALGORITHM 

1. Notation 

We will consider the situation depicted in Fig. 3. The curve r is discretized into 
N = 2” equispaced nodes x,, x2 ,..., xN, and we will denote the spacing between 
adjacent nodes (i.e., I(xi - xi- I 11) by h, while the internal normal to r at xi will be 
denoted by N,. Suppose that for each i= 1, 2,..., N, a normally oriented dipole of 
strength o, is located at the node xi. In this section, we will describe an order 2” 
algorithm for rapid calculation of approximations gi, i= 1,2,..., 2”, to the sums 

GAxi) = : ajdxj,N,(xi) (7.1) 
j=l 
i#i 

for i = 1, 2 ,..., N. 
We will denote by A the set of N = 2” nodes xi, i = 1,2,..., N, and by S the set of 

all dipoles located at these nodes. For m = 1, 2 ,..., n and k = 1, 2 ,..., 2”-“, we will 
denote by A: the subset of A consisting of the nodes Xi with i = 2” (k - 1) + 1, 
2m(k - 1) + 2,..., 2”k - 1, 2”k. The subset of S consisting of dipoles located at the 
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nodes in Ai will be denoted by Sk. For each AL, we will denote by Cmk the point 
in R2 defined by the formula 

Cmk = 4(x 2m(k--l)+2m-I+X2m(k~1)+2m-I+1). 

(Conceptually, Cmk is the “center” of A$) Di will denote a circle with the center at 
Cmk and radius h2”‘+l, fi”, will denote a circle with the center as Cmk and radius 
h2”, and & will denote a circle with the center at Cmk and radius h2”-I. 
Obviously, Ak, c & c &, c 0;. 

For m = 1, 2,..., n, we will denote by W,,, the set of all S”, with k = 1, 2 ,..., 2”-“. 
For k = 1, 2 ,..., 2”-“, we will denote by m,,,k the subset of W,,, consisting of all Sk 
such that Ai c 0; and Ah c &,. Finally, we will denote by W,,,, the subset of W,,, 
consisting of all SL such that AL z 0;. 

For each of A: and p > 1, we will define the mapping &&,: C’ \A$, + C’ by the 
formula 

(7.2) 

with 

ULi = c cTjNj( c,, - x,)i- ‘. (7.3) 
+‘A; 

For each Ai and p 3 1, we will define the mapping +&,: C’ + C’ by the formula 

4e&> = f &(x - Gzk)’ (7.4) 
i=O 

with 
(7.5) 

Finally, we will denote by x”,, the mapping C’ --+ C’ defined by the formula 

X&,(x) = 2 &iCx - cmk)i (7.6) 
i=O 

with 

(7.7) 

Remark 7.1. Due to Lemma 5.3, the function #&, can be viewed as an 
approximation to 

x FAk oj#x,.N,(x) (7.8) 
J m 
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for x outside &,. Due to Lemma 5.2, tj& can be viewed as an approximation to 

1 fJj4Xj,N,(4 (7.9) 
x, E P/nk 

for x inside Dk,. Finally, XC,,,, can be looked upon as an approximation to 

C gj4x,.N,(x) 
x, E wmk 

(7.10) 

for x inside &, due to Lemma 5.2. 
Furthermore, the relative errors of all these approximations are proportional to 

c2-P, where c is a constant determined by the points x,, x1,..., xN. 

2. Description of the Algorithm 

The algorithm consists of four stages. During the first stage the coefficients of 
expansions b& are evaluated for all Ai and some sufficiently large p (in most 
applications, p E [ 10, 201) by means of Lemmas 5.1 and 5.3. During the second 
stage, expansions q& with appropriately chosen i are used to evaluate the coef- 
ficients of expansions $& by means of Lemma 5.2. During the third stage, expan- 
sions $& are combined to obtain the coefficients of expansions J$, by means of 
Lemma 5.4. Finally, during the fourth stage the expansions xf, are evaluated at xj, 
j = 1, 2,..., N, giving the desired approximation to (7.1). In the formal description of 
the algorithm below, the left column contains the operations to be performed. In 
the right column, CPU time estimates for operations (Stages, Steps, and Do Loops) 
are given. The coefficients aI, a2 ,..., a,, in these estimates are determined by the 
computer system, implementation, etc. 

Stage 1 

Step I 

for m = 2 Step I until 2”- ’ do 
(Using Lemma 5.3, create the 

coefficients of expansions rfP 
from the fields of dipoles at 
the nodes x2* _, , xZk) 

(a,p+a3P2)2” 

aI G” 
aI P 

End of Step 1 

Step 2 

for m=2 Step 1 until n- 1 do 

BEGIN 
for k = 1 Step 1 until 2”-” do 
(Using Lemma 5.1, combine 

expansions d$’ and dzP 
obtaining &j,+ ,,J 

END 

a,2” 

C;;: azp22”-” = a,2” 

a, p22” In 

End of Step 2 
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Stage 2 

Step 1 

for m=2 Step 1 until n- 1 do 

BEGIN 
for k= 1 Step 1 until 2”-” do 
(Using Lemma 5.2, combine 

expansions &im, with appropriately 
chosen j to obtain I&) 

END 

End of Step 1 

Step 2 

for m=n-1 Step (-1) until 2 do 

BEGIN 
for k= 1 Step 1 until 2”-” do 
(Using Lemma 5.4, add expansion 

x& to expansions l(lzIiiP 
and K$- ,,,, obtaining expansions 
xi!:,‘, and x?- ,,J 

END 

End of Step 2 

Stage 3 

Step 1 

for k= 1 Step 1 until 2”-’ do 
(evaluate the expansion x’;,, at 

the nodes xX _, , xzk obtaining 
the field xt,, at these nodes). 

End of Step 1 

Stage 4 

Step 1 

for k = 1 Step 1 until 2”- ’ do 

BEGIN 

for i = 2k - 1, 2k do 

(Evaluate an approximation 
gi to G,(xi) according to 
the formula 

V. ROKHLIN 

A, p=2” + a, p=2” = a8 $2” 

A, p22” 

z;:12 a4p22”-” = a5 p22” 

2”- “a,p2 

a, p22” 

~m~‘2a6p22”-“=a,p22” 

a6 p22”-” 

ad” 
aIS” 
a9 P2 “-‘=a,,p2” 

a,,2”p 
aJ”p 
aJ”p 

END 

End of Step 1 

(7.11) 

Remark 7.2. Adding up the CPU time estimates for stages 1 through 4, we 
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obtain the following estimate for approximately applying the matrix A, of the 
system (3.7) to a vector: 

T,=(Po+P,p+Pzp2)N. (7.12) 

Since the relative accuracy of the expansions d$,,, $Lp,, xl, is proportional to l/2” 
(see Remark 7.1) (7.12) can be rewritten as 

T, = (Qo + Q, log(E) + Q,(logWz) N, 

where .s is the relative accuracy of the evaluation of the operator A,. 

(7.13) 

3. Rapid Solution of the System (3.7) 

In the preceding subsection, we described in some detail an algorithm for rapid 
application of the matrix A,, of the system (3.7) to arbitrary vectors. A standard 
algorithm for the solution of the original equation (2.1) utilizes a GCRA to solve 
the system (3.7) and the GCRA involves applying the matrix A, to a sequence of 
recursively generated vectors. If, instead of applying A, to these vectors directly, we 
utilize the algorithm of the preceeding subsection, then by combining the estimates 
(3.10) (3.111, (7.13), we obtain the following CPU time estimate for solving (3.7): 

T so~ve d (a log(E2) + Wx(E2))2) N 

+ (Qo + Ql log(E,) + Q2(log(E, )J2) l&E,) N, (7.14) 

where s1 is the relative accuracy of the approximation JN of the matrix A,,,, s2 is 
the relative accuracy in the solution of this approximate linear system, and the coef- 
ficients a, 6, Q,, Q,, Q, are determined by the computer system, language, etc. 
When E, = s2 = E (which is often a reasonable convention), (7.14) becomes 

Tso,,, = (RI + R, log(E) + Rdlos(~))2) Nlog(E) 

with R,, R,, R, determined by the language, computer system, etc. 

(7.15) 

VIII. IMPLEMENTATION AND NUMERICAL RESULTS 

The algorithm of the present paper has been implemented for both Dirichlet and 
Neumann problems in two dimensions, and in this section we present three 
numerical examples illustrating its performance. 

1. Dirichlet Problem Inside a Square 

The problem (2.1) was solved with Sz a square with the corners at the points 
(- 10, lo), (- 10, - lo), (10, - lo), (10, 10) and the right hand sidefequal to the 
field of a charge B of unity intensity located at the point (13, 5) (see Fig. 4). In this 
case, the solution of (2.10) is equal to the field of the charge B inside Sz (see [ 1 1 ] ), 
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XB 

FIG. 4. Dirichlet problem inside a square. 

which provides a convenient way to verify the accuracy of the solution. The 
solution obtained by the algorithm of this paper was calculated at 19 points inside 
L? with the coordinates (-9, -9) (-8, -8) ,..., (-1, -l), (0, 0), (1, 1) ,..., (8, 8), 
(9,9), and in Table I, the results for various discretizations of r are compared to 
the analytical solution at these points. Table I illustrates the following three obser- 
vations characteristic of algorithms based on second kind integral equations. 

(a) The number of iterations required by GCRA to converge to a given 
accuracy is almost independent of the number of nodes in the discretization of I7 

b. The computed convergence rate of the algorithm is asymptotically 
quadratic as expected. 

c. The effect of truncation errors on the accuracy of the solution is virtually 
independent of the number of nodes in the discretization of r since the system of 
linear equations being solved is well-conditioned. 

In Table II, the CPU times required by the algorithm of the present paper are 
compared to the CPU times required by a fast Poisson solver written at the 
National Center for Atmospheric Research (See [ 5, 13a]) to solve a similar 

TABLE I 

Number of nodes Number of 
on the boundary Iterations 

of the square of GCRA 

Resulting accuracy 
(mean square error 

at 19 receivers) 
CPU time 

on IBM-3033 

64 11 0.8320-2 0.34 
128 12 0.9030-4 0.65 
256 14 0.8970-5 1.16 
512 14 0.2090-S 1.98 

1024 14 0.3730-6 3.51 
2048 14 0.5680-I 6.52 
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TABLE II 

CPU time on IBM-3033 

Number of nodes on 
the boundary of the square NCAR Fast Poisson Solver Algorithm of the present paper 

128 0.07 0.65 
265 0.36 1.16 
512 1.71 1.98 

1024 6.84 (estimate) 3.51 
2048 27.36 (estimate) 6.52 

problem. Both algorithms were run on an IBM-3033 with the algorithm of this 
paper converging to lop7 and the solution evaluated at 19 points inside the square. 
It is clear from Table II that for relatively small scale interior problems in rec- 
tangular regions, the NCAR algorithm is obviously superior. For large scale 
problems, the algorithm of the present paper is faster, and its performance is prac- 
tically independent of the shape of the region. 

Remark 8.1. It should be noted that in the above example, the algorithm of the 
present paper was used to evaluate the solution at 19 points inside the square, while 
the NCAR program produced the solution at nZ/16 points. Therefore, the com- 
parison between these algorithms that can be inferred from Table II is only valid if 
the solution is required at a small number of points. 

The algorithm of the present paper has been applied to several other problems, 
both exterior and interior. Figure 5 depicts the lines of a horizontal air current scat- 
tering from a car-shaped obstacle (exterior Neumann problem). In this case, the 
number of nodes in the discretization of the boundary was 1024, the problem was 
solved to 7 digits, and it took 5.11 seconds on an IBM 3033. Figure 6 depicts the 
equipotential lines of a field generated by 5 point electrodes inside a grounded con- 
ducting cavity of a complicated shape (interior Dirichlet problem). In this case, the 
number of nodes on the boundary was 2048, and the algorithm took 8.32 seconds 
of IBM 3033 CPU time to converge to 6 digits. 

FIG. 5. Lines of current for an exterior Neumann problem. 
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FIG. 6. Equipotential lines for an interior dirichlet problem. 

IX. GENERALIZATIONS AND CONCLUSIONS 

The algorithm of the present paper appears to be the most efficient of presently 
available tools for the solution of large scale boundary value problems whenever 
the solution needs to be evaluated at a limited number of points. For small to 
moderate scale interior problems, and whenever the solution is required at a large 
number of points, classical fast solvers are likely to be more efficient. 

In Section VIII, we assumed that the number of the nodes in the discretization of 
the boundary of the region is a power of 2. Clearly, this requirement is not an 
essential one, and it can be eliminated by obvious changes in the logic. 

The algorithm of this paper has an obvious 3-dimensional analogue. In the 3- 
dimensional version, the sines and cosines in expressions (2.14k(2.15) are replaced 
by spherical harmonics (see [ 1 1 ] ), one-dimensional quadrature formulae are 
replaced by two-dimensional ones, and the programming becomes more involved. 
Otherwise, the transition is fairly straightforward. 

In many applications, the Nystrijm method is not the algorithm of choice as a 
tool for discretizing the integral equation. In aerodynamical calculations, for exam- 
ple, the powerful and versatile method of panels (see [S, 183) has been extremely 
successful. Like the Nystrom algorithm, it leads to repeated evaluation of a field of 
a distribution of charges and/or dipoles on the boundary of the region. The 
algorithm of Section VII can be applied in the context of the method of panels just 
as easily as in the context of the Nystriim method. This would result in a method of 
panels with the operation count proportional to n (where n is the number of nodes 
in the discretization of the boundary of the region) as opposed to the usual estimate 
of n*. 
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